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Recently, automatic diagnosis of diabetic retinopathy (DR) from the retinal image is the most
signi¯cant research topic in the medical applications. Diabetic macular edema (DME) is the
major reason for the loss of vision in patients su®ering from DR. Early identi¯cation of the DR
enables to prevent the vision loss and encourage diabetic control activities. Many techniques are
developed to diagnose the DR. The major drawbacks of the existing techniques are low accuracy
and high time complexity. To overcome these issues, this paper proposes an enhanced particle
swarm optimization-di®erential evolution feature selection (PSO-DEFS) based feature selection
approach with biometric authentication for the identi¯cation of DR. Initially, a hybrid median
¯lter (HMF) is used for pre-processing the input images. Then, the pre-processed images are
embedded with each other by using least signi¯cant bit (LSB) for authentication purpose. Si-
multaneously, the image features are extracted using convoluted local tetra pattern (CLTrP) and
Tamura features. Feature selection is performed using PSO-DEFS and PSO-gravitational search
algorithm (PSO-GSA) to reduce time complexity. Based on some performance metrics, the PSO-
DEFS is chosen as a better choice for feature selection. The feature selection is performed based
on the ¯tness value. A multi-relevance vector machine (M-RVM) is introduced to classify the 13
normal and 62 abnormal images among 75 images from 60 patients. Finally, the DR patients are
further classi¯ed by M-RVM. The experimental results exhibit that the proposed approach
achieves better accuracy, sensitivity, and speci¯city than the existing techniques.

Keywords: Diabetic retinopathy (DR); least signi¯cant bit (LSB); local tetra pattern (LTrP);
optical coherence tomography (OCT); hybrid median ¯lter (HMF); particle swarm optimization
(PSO); di®erential evolution feature selection (DEFS).
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1. Introduction

Diabetic Retinopathy (DR) is a major problem to
the people a®ected by diabetic macular edema
(DME). DR a®ects the people with high sugar or
glucose level in the blood over a persistent period.
High level of blood sugar may destroy the blood
vessels in the posterior part of the eye. Therefore,
the blurring occurs in the middle of the central vi-
sual ¯eld. The World Health Organization (WHO)
recent survey space that there are 135 millions of
people having diabetes and this number may in-
crease up to 300 million by 2025. Our approach
utilizes digital images such as optical coherence to-
mography (OCT) and retinal images to provide a
better method for diagnosing the DR and identify
the disease severity with security.

In general, the DR is classi¯ed into di®erent
types. Some of the major types are nonproliferative
DR (NPDR) and proliferative DR (PDR). The
NPDR is the initial stage of the DR in which the
blood vessels leak the °uids and distort the eye-
sight. The PDR is an advanced stage of the DR,
which creates greatest risk of visual loss than the
NPDR. In that way, the PDR a®ects the following:

. Vitreous hemorrhage

. Traction retinal detachment (TRD)

. Neovascular glaucoma

The OCT image is a noninvasive diagnostic
technique that extracts cross-sectional view of the
retinal image. According to a recent survey, the
diabetes is recognized as a main cause of blindness.
If it is not diagnosed early and not treated in time, it
leads to severe damage to the retinal structure that
leads to partial or complete blindness. Figure 1
illustrates the diagnosis of DR.

Over a period of last decade, a lot of researches
are conducted by various experts for automatic

detection of DR based on the extraction of retinal
and OCT images features. In this proposed work,
the retinal image of the patient is embedded with
the OCT image of the same patient to authenticate
the patient for security. The incidence of the DME
over 10-year period is described as follows:

. 20.1% in the younger—onset group.

. 25.4% in the oldest—onset group taking insulin.

. 13.9% in the oldest—onset without taking insulin.

Various existing approaches have several issues
such as low accuracy, time complexity, and
computational complexity. Enhanced image pro-
cessing techniques are developed to overcome the
issues of the existing methodology. The major con-
tribution of this proposed work are de¯ned as
follows:

. Initially, pre-processing is performed using a
hybrid median ¯lter (HMF) to eliminate the
noises from both OCT and retinal images of the
patient.

. The pre-processed OCT image is embedded with
the own retinal image to provide authentication.
After the authentication, the images are extrac-
ted to get individual OCT and retinal images.

. Both image features are extracted by using con-
voluted local tetra pattern (CLTrP) along with
the Tamura features.

. A hybrid feature selection strategy is used that
incorporateswith the particle swarmoptimization-
gravitational search algorithm (PSO-GSA) and
PSO-Di®erential evolution feature selection
(PSO-DEFS) techniques to reduce the time
complexity.

. A M-RVM classi¯er is used to classify the normal
and abnormal images that denote the a®ected and
not a®ected DR. The abnormal images are further
used to classify the disease through M-RVM.

Fig. 1. An illustration for diagnosis of DR.
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The rest of the paper is structured as follows.
Section 2 brie°y explains the overview of the related
works in the secure DR detection technique.
Section 3 includes the detailed description of the
proposed work including HMF, image embedding
process, feature extraction, feature selection, and
M-RVM classi¯cation. Section 4 describes the im-
plementation details. Section 5 summarizes with a
brief conclusive remark and discussion on future
works.

2. Related Works

This section provides a comprehensive review of
early detection of DR from OCT and retinal images.
Singh and Tripathi proposed an automated DR
diagnosis system to detect various lesions of the
retina that were exudates, microaneurysms, and
hemorrhages. A retinal grading algorithm was used
for assessment of the severity of the disease.
Therefore, the patients were referred to the corre-
sponding specialist to provide better treatment.1

Sikorski et al. introduced an OCT to perform cross-
sectional imaging of the retina. This OCT success-
fully acted as an objective monitoring approach of
the macular thickening before and after therapy. It
also used to recognize the anatomy of DME and
intra-retinal damage.2

Anitha et al. originated an automated system
based on Arti¯cial Neural Network (ANN) for eye
disease classi¯cation. A back propagation neural
network was used for the classi¯cation purpose to
provide better performance results.3 Alireza et al.
initiated a computational intelligence-based ap-
proach for the detection of exudates in DR images.
But, the spatial relationship was not established
between the detected exudates and fovea. And also
the red lesions like hemorrhages and micro-
aneurysms were not identi¯ed automatically.4

Matthew et al. proposed an automatic approach for
learning variability models to identify excessive
glycemic variability. An automatic feature selection
was performed on a rich set of pattern recognition
features.5

Lochan et al. developed an automated system to
analyze the retinal images for extracting signi¯cant
features of DR using image processing technique.
The feature is captured from blood vessels, exu-
dates, microaneurysms and texture.6 Gurudath
et al. introduced an automatic identi¯cation of the
presence of DR from color fundus images of the

retina. This identi¯cation incorporates a three-lay-
ered ANN and support vector machine (SVM) to
classify the retinal images.7

Srinivasan et al. utilized multi-scale histograms
of oriented gradient descriptors. This histogram was
considered as feature vectors of the SVM-based
classi¯er. The spectral domain (SD)-OCT datasets
are cross-validation from normal objects, age-
related macular degeneration, and DME.8 Saidha
et al. detected Primary retinal pathology in multiple
sclerosis using OCT. The functional corroboration
of retinal dysfunction was provided via multifocal
electroretinography in a subset of patients.9 Rega-
tieri et al. examined choroidal thickness in patients
with diabetes by SD OCT. This choroidal thickness
was estimated from the posterior edge of the retinal
pigment epithelium.10 Zhi et al. estimated modi¯-
cation occurred in early diabetes-induced in a Type-
II diabetic mouse model using OCT and optical
microangiography.11

Rodrigues et al. investigated the retinal modi¯-
cation prior to microangiopathy in type 2 diabetes
mellitus (DM) patients without DR and in type 2
DMpatients withmild DR. An analysis of the retinal
layers was accurately performed with the Cirrus
High De¯nition-OCT Review Software 6.0.12 Bress-
ler et al. estimated the reproductivity of the central
sub¯eld thickness and volume measurement from
OCT images with Zeiss status and Optovue RTVue.
This measurement was converted into Equivalent
Zeiss Stratus Metrics.13 Miura et al. measured the
three-dimensional (3D) architecture of neovascu-
larization in PDR by Doppler OCT (DOCT). The
Prototype DOCT was used to measure the 3D vas-
cular architecture at vitreoretinal adhesions.14

Meuer et al. determined the presence of Epir-
etinal Membranes (ERMs) and further retinal
lesions using standardized grading of muscular
(SD) OCT scans. It also described that the preva-
lence and interrelationships of ERMs.15 Gerendas
et al. measured choroidal thickness on SD-OCT
images by automated algorithms. Here, the choroi-
dal pathology was correlated with retinal modi¯-
cation attributable to DME.16 Abhishek et al.
designed an algorithm for accurate segmentation of
intra-retinal layers for normal subjects and also
patients with edema. This segmentation process
was less prone to noise, and the pre-processing step
was considered as an optional case. Therefore,
noises were obtained in some of the segmentation
process.17
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Hasegawa et al. reviewed the medical records of
59 eyes with resolved macular edema, which is as-
sociated with branch retinal vein occlusion. During
the presence or absence of the track lines, the eyes
were classi¯ed in the SD-OCT images. It was
obtained after the resolution of macular edema.18

Hunter et al. introduced the utilization of ultra-high
resolution OCT subclinical anatomic alterations. It
describes the suboptimum vision despite pseudo-
phakic cystoid macula edema resolution.19 Zhang
et al. proposed e-ophtha EX that is manually inte-
grated with contoured exudates. The normalization,
and denoising and detecting re°ections and artifacts
were performed in this proposed approach.20

3. Proposed Work

This section discusses the detailed description of the
enhanced approach for identi¯cation of a®ected DR
from OCT and retinal image. Figure 2 illustrates the
overall working °ow of enhanced feature extraction
and selection for detection of DR. The major steps
involved in this proposed methodology are:

. Pre-processing

. Image embedding

. Feature extraction

. Feature selection

. Classi¯cation

3.1. Pre-processing

Image pre-processing is an initial stage for identi¯-
cation of a®ected DR. Di®erent techniques are used
to remove the unwanted noise in the image. Two
types of images such as OCT and retina are used to
detect the type of diseases in DR. In this proposed
work, a HMF is used to remove the noise in both
images. The operation performed by HMF is dis-
cussed below:

(1) Hybrid Median Filter
The HMF is a windowed ¯lter of nonlinear class

that easily removes the noise while preserving the
edges. It preserves the edge e®ectively than a square
kernel median ¯lter. The procedure for HMF is
discussed as follows:

HMF Algorithm

1. Locate a cross window over element;
2. Pick up the elements;
3. Order the elements;

4. Yield the middle element;
5. Locate a window over element;
6. Pick up the elements;
7. Order elements;
8. Yield the middle element;
9. Get the result from point 4 and 8, and element

itself;
10. Order elements;
11. Yield the middle element.

Based on this algorithm, the working °ow of the
HMF is described as follows: apply the Median
Filter (MF) with a cross mask, apply MF with the x
mask, and return the median of obtained result and

OCT Image Retina Image

PRE-PROCESSING 
(Hybrid Median Filter)

PRE-PROCESSING 
(Hybrid Median Filter)

FEATURE EXTRACTION 
(CLTrP)

Security

Image Embedding 
(Least Significant Bit)

RVM BASED 
CLASSIFICATION 

Check whether the 
classification result is 

authenticate or not   
Stop the Operation 

IMAGE EXTRACTION 
(CLTrP)

OCT Images Retina

FEATURE EXTRACTION 
(CLTrP and Tamura)

FEATURE SELECTION 
(PSO and DEFS)

FEATURE SELECTION 
(PSO and GSA)

Multi - Relevance Vector Machine (MRVM) based Classifier 

If it is authenticate

Or else

Normal Images Abnormal Images

MRVM based Classifier 
(NODR, Mild NPDR, Moderate NPDR, Severe NPDR, Very Severe NPDR, High Risk NPDR, PDR 

with TRD, PDR with Vitreous Hemorrhage, Status Post Photo Coagulation, Focal Coagulation)

Fig. 2. An overall °ow diagram of the proposed integrated
approach for PSO-DEFS and PSO-GSA based feature selection
for detection of DR.
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element itself. The above mentioned work°ow of
HMF is depicted below in Fig. 3.

In Fig. 3, MP and MD denote the MF with cross
mask and MF with the x mask, respectively. This
HMF has better corner preserving characteristics,
which is widely used to improve the quality of the
OCT and retinal images. Even with repeated ap-
plication, the HMF does not excessively smooth
image details and provides superior visual quality in
the ¯ltered image.

3.2. Image embedding for security

This image embedding is mainly used to provide
authentication to the diabetic patient. In this paper,
pre-processed OCT and retinal images of the dia-
betic patient are embedded with each other for se-
curity enhancement. The most widely used
approach to embed the image is the usage of least
signi¯cant bit (LSB). In general, the 8-bit image
pixel is divided into most signi¯cant bit (MSB) and
least signi¯cant bit (LSB) that is illustrated below:

The LSB represents the lowest signi¯cant bit in
the byte value of the image pixel. In general, a
conventional LSB requires 8 bytes of the pixel to
store the 1 byte of secret image. But, in proposed
LSB, the last 4 bits are used to embed the two
images. Figure 4 depicts the step-by-step procedure
for image embedding using LSB that are described
as follows:

(1) Choose a cover image i.e., OCT image of size
M*N as an input.

(2) The retinal image to be hidden is embedded in
red, green and blue (RGB) component only of
an image.

(3) Utilize a pixel selection ¯lter to obtain the best
areas to hide the information in the cover image
to attain better rate. This ¯lter is applied to
LSB of each image pixel to hide the retinal
image, leaving MSB.

(4) Finally, the image is hidden by using bit re-
placement method.

The features of the embedded image are extrac-
ted by using CLTrP. The extracted features are
classi¯ed by using relevant vector machine (RVM)
classi¯er. The obtained classi¯cation result is used
to authenticate whether the embedded images
match with the OCT and retinal images in the da-
tabase. It is performed to check whether the em-
bedded images belongs to the same patient or not. If
the authentication is false, the operation should
stop without any delay or else further processing is
performed. This process is mainly used to enhance
the security to avoid the mismatch of the OCT and
retinal images of the patient.

After the authentication, embedded images are
extracted by using the CLTrP approach. Again the
OCT and retinal images are separated from each
other to identify the disease in DR.

3.3. Feature extraction

The features of both OCT and retinal images are
extracted by using CLTrP and Tamura features. A
set of features is de¯ned to represent the informa-
tion for analysis and classi¯cation.

(1) CLTrP approach
The relationship between the center pixel and the
neighbors is encoded by using the CLTrP tech-
nique. A Gabor transform is applied to obtain the
convoluted value. A two-dimensional (2D) Gabor
function is a Gaussian modulated by a complex

MedianMedian MedianMeMeddiianan

Hybrid Median Filter

(a) (b) (c)

M diMedian

Fig. 3. (a) MF with cross mask, (b) MF with x mask and
(c) Median of MP and MD.

Retina Image OCT Image RGB component 

Pixel Filtering
LSB Replacement 

Method

Embedded Image

Fig. 4. Algorithm of LSB.
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sinusoid. It is speci¯ed in terms of frequency of the
sinusoid ’ and the Standard Deviations (SDs),
where �a and �b denote the SD of `a' and `b',
respectively. The Gaussian envelope (�) of the SDs
is described as follows:

�ða; bÞ ¼ 1

2��a�b

e

h
�ð12Þ

�
a 2

� 2
a
þ b 2

� 2
b

�
þ2�j’a

i
: ð1Þ

The Gabor wavelets are obtained by dilation and
rotation of the generating function �ða; bÞ as fol-
lows:

� lmða; bÞ ¼ c�l�ða 0; b 0Þ ð2Þ
where a 0 and b 0 are estimated as follows:

a 0 ¼ c�lðx cos �þ y sin �Þ; ð3Þ
b 0 ¼ c�lð�x sin �þ y cos �Þ: ð4Þ

Here, � ¼ n�=J, l 2 f0; 1; . . . ;R� 1g, and m 2
f0; 1; . . . ;J � 1g. `J ' and `R' represents the number
of desired orientation and scales, respectively. The
response of the Gabor ¯lter is the convolution of
Gabor window with the image (I), where I ¼ 8.
Here, eight di®erent orientation values for CLTrP
are obtained, where each image contains 3328 fea-
tures. This mean value of this orientation is esti-
mated to obtain the speci¯ed result.

(2) Tamura features
In this proposed work, six general Tamura features
such as coarseness, contrast, directionality, line-
likeness, regularity, and roughness are extracted
from both OCT and retinal images in the database.
These features characterize the low-level statistical
properties of the images. The properties and com-
putation of the Tamura features are discussed as
follows:

(a) Coarseness (Ecrs)
It refers to the size and number of image primi-

tives for analyzing the image. This value is used as
the scale factor during extraction of other image
features. This coarse feature consists of a small
number of large primitives and a ¯ne feature con-
tains a large number of small primitives. This fea-
ture is estimated as follows:

Ecrs ¼
1

n2

Xn
a

Xn
b

2jpða; bÞ; ð5Þ

where n � n represents the image size, pðabÞ is a sum
of each pixel, and j enhances the di®erence of

moving averages
P

a

P
bpða; bÞ=22j, dominated a

2j � 2j neighborhood, along the horizontal and
vertical directions.

(b) Contrast (Econ)
It de¯nes the image quality in the narrow sense

and also refers the intensity di®erence between the
adjacent pixels. The image with high contrast has
large intensity di®erence and vice versa. It is mea-
sured as follows:

Econ ¼
�

ð�4�4Þ1=4
; ð6Þ

where � denotes the SD of the image, and �4
represents the fourth movement of the image.

(c) Directionality (Edir)
It refers the shape of the image primitives and

the placement rule, and also it consists of various
recognition orientation. This feature is estimated as
follows:

Edir ¼ 1� nf � np �
Xnp

p

X
��rp

ð�� �pÞ2 �HLDð�Þ; ð7Þ

where HLD is local direction histogram, np repre-
sents the number of peaks of HLD, �p denotes pth
peak position of HLD, rp is the range of pth peak
between valleys, nf is the normalizing factor, and �
denotes the quantized direction code.

(d) Line-likeness (Elin)
It refers only the shape of the image primitives

and is simultaneously directional. It is computed as
follows:

Elin ¼
Xn
a

Xn
b

PDdða; bÞ cos½ða� bÞ

� 2�

n

Xn
a

, Xn
b

PDdða; bÞ; ð8Þ

where PDdða; bÞ represents the n � n co-occurrence
matrix of points at distance d.

(e) Regularity (Ereg)
It refers the variations of the texture primitive

placement. A regular image consists of identical or
similar primitives, and irregular image consists of
multiple primitives. It is estimated as follows:

Ereg ¼ 1� nfð�crs þ �con þ �dir þ �linÞ; ð9Þ
where �xxx represents the SD of Exxx.
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(f) Roughness (Ergh)
It refers the tactile variations of physical surface,

and it contains angular primitives. This roughness
is computed by using the following equation:

Ergh ¼ Ecrs þ Econ: ð10Þ
Also, the features such as energy, entropy and

auto-correlation are extracted in this proposed
work. The computation of this additional Tamura
features is described below:

(g) Energy (En)
It is the texture measures of gray scale image and

is estimated by adding the absolute values in a local
neighborhood.

En ¼
Xm
a¼1

Xn
b¼1

ða� bÞ2P ða; bÞ; ð11Þ

where a and b represent elements in the Tamura
features, P ða; bÞ is a probability values for changes
between gray level m and n.

(h) Entropy (Et)
It describes a large amount of information about

the images. This entropy estimates the information
loss, and measures the intensity distribution ran-
domness.

EntropyðCeÞ ¼ �
X
a

X
b

Pd½a; b� lnPd½a; b�; ð12Þ

where Pd½a; b� is a probability value for the changes
between the gray levels `m' and `n' at a distance d.

(i) Auto-correlation (EAC)
The auto-correlation analyzes the regularity and

coarseness of texture. It is evaluated as:

EAC ¼ 1� nfðkurtosisðconÞ þ kurtosisðdirÞ
þ kurtosisðlinÞ þ kurtosisðrghÞÞ þErgh: ð13Þ

After extracting the above mentioned Tamura
features, the results are displayed as in Table 1.

3.4. Feature selection

The feature selection is the process of selecting the
subset of relevant features. The relevant features in
the OCT and retinal images are selected by using
both PSO-GSA and PSO-Di®erential Evolution
Feature Selection (PSO-DEFS) techniques.

(1) PSO-GSA
The best way to combine the PSO with GSA is to

ensure their independent performance in a serial

mode. This PSO-GSA hybridization treats any
one of the particles in the swarm as a particle
PSO and GSA by applying a co-evolutionary
technique. Hence, each particle in the PSO-GSA
updates the position with the contributions of
both PSO velocity and GSA acceleration. Two
terms of velocity updating information in proposed
PSO-GSA contain these contributions. PSO is a
population-based meta-heuristic method that is
motivated by the intelligent collective behaviors of
birds, ¯sh, ants or human beings. Each particle in
the PSO moves to a new position in the problem
space according to the new velocity and previous
positions. The velocity and new position of the
particle are updated according to the following
equations:

vk
j ðiþ 1Þ ¼ wðiÞvk

j ðiÞ þ d1 � r1 � ðPbestkj � xk
j ðiÞÞ

þ d2 � r2 � ðGbestkj � xk
j ðiÞÞ; ð14Þ

xk
jðiþ 1Þ ¼ xk

j ðiþ 1Þ þ vk
jðiþ 1Þ; ð15Þ

wðiÞ ¼ rand� i

imax

� ðwmax � wminÞ þ wmin; ð16Þ

where vk
j ðiÞ is the velocity of the particle `j' in the

kth dimension at the ith iteration and xk
jðiÞ is the

current position of the particle. d1 and d2 are the
acceleration coe±cients that control the in°uence
of Pbest and Gbest during the search process. r1
and r2 are the random numbers that lie within the
range [0,1]. Pbestkj is the previous best position
found by the particle `j' and Gbestkj is the global
best position among all the particles. wðiÞ is the
inertia weight. wmax and wmin are the maximum
and minimum ranges of the inertia weight. `i' is
the current iteration and `imax' is the maximum
iteration.

Table 1. The results of tamura features.

Tamura Features Feature Values

Coarseness 36.5123
Contrast 56.6010
Directionality 75.1649
Line-likeness 0.0541
Regularity 1
Roughness 57.6010
Energy �2.0516eþ06
Entropy 6.2796eþ06
Auto-correlation 6.2521eþ07

An enhanced PSO-DEFS based feature selection
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GSA is also a population-based meta-heuristic
method inspired by the Newtonian physical law of
gravitation and mass interactions. In GSA, each
agent attracts each other agent through the grav-
ity force that is directly proportional to the prod-
uct of their masses and inversely proportional to
the square of the distance between them. The ve-
locity and the position of an agent at the next it-
eration (iþ 1) are computed using the following
equations:

vk
jðiþ 1Þ ¼ rand� vk

jðiÞ þ P k
j ðiÞ; ð17Þ

xk
jðiþ 1Þ ¼ xk

j ðiÞ þ vk
j ðiþ 1Þ ð18Þ

Procedure for PSO-GSA

Input: Feature values, number of parameters to be
optimized, and maximum number of iterations.

ALGORITHM: Search space identi¯cation t ¼ 0;
Random initialization X(t);

For i ¼ 1 : N
Fitness evaluation of objects;

val ¼ ðfeavalði; jÞ � feavalðj; iÞÞ
=meanðeach attributeÞ;

If val > mean ðattributeÞ=2;
Update the parameters of G, best, worst and M;

End for
For i ¼ 1 : N
Estimation of force on each attribute;
Estimation of acceleration and velocity of each

object;
Update the position of agents by parameters to

yield Xðtþ 1Þ;
t ¼ tþ 1; // until the stop criteria is reached
End if
End for
Get the best values;
Best values passed to DEFS; // attribute selected

by GSA
For i ¼ 1 to size (inputs)

Initialize population;
Generate chromosome; // until number of

iteration
Process single point cross over;
Each chromosome undergoes mutation with

a ¯xed probability �m;
Evaluate Fitness value using equation (19),

End for

The ¯tness value is evaluated using the following
equation:

Fitness value ¼
X

Euclidean distances of each

feature in the column from

their respective attribute:

ð19Þ
In this hybrid PSO-GSA, the PSO uses a mem-

ory (pbest, gbest) to save the best solution, when
the GSA uses the ¯tness value to adjust the accel-
erations. Here, the gbest is used to exploit the global
best. This PSO-GSA solves a wide range of opti-
mization problem.

(2) PSO-DEFS
In PSO, a particle denotes the each member of

population i.e., swarms. Each particle has its indi-
vidual best position that is denoted as pbest. After
that, the optimal solution established by entire
swarm is known as gbest. All the particles have its
own ¯tness function that is de¯ned by the optimi-
zation function.21 The below algorithm is the hy-
bridization of PSO and DEFS.

PSO combined DEFS Algorithm

Inputs: Feature values, number of parameters to be
optimized, maximum number of iterations

ALGORITHM: Randomly initialize position,
number of iterations, and the velocity of each
particle

While i < maxiteration
Evaluate Fitness for each particle;

// Fitness
Val ¼ ðfeavalði; jÞ � feavalðj; iÞÞ=skewness

ðeach attributeÞ;
If val > skewnessðattributeÞ=2
pbest ¼ val;
For i ¼ 1 to PopulationSize do
Update pbest of particle;
Update gbest of particle;
For i ¼ 1 to PopulationSize do

For d ¼ 1 to Dimensionality do
Update the velocity of particle i;
Update the position of particle i;

End For
End For

End For
End While

Return gbest;

U. Balakrishnan, K. Venkatachalapathy & G. S. Marimuthu
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gbest values passed to DEFS // attribute selected by
PSO

For i ¼ 1 to size (inputs)
Initialize population
Generate chromosome // until number of

iteration
Process single point crossover
Each chromosome undergoes mutation with

a ¯xed probability �m;
Evaluate Fitness using equation (19)
End for

The PSO-GSA and PSO-DEFS approaches are
used for the e®ective estimation of the ¯tness value.
From the obtained result, the PSO-DEFS is the
better choice for feature selection.

Figure 5 shows that if the number of generation
is increased, then the ¯tness value is also gradually
increased, when the experiment is iterated after it
found the optimal solution. The experimental
results show the result in terms of ¯tness value for
ten generations. Here, the 10th generation delivers
an optimum number of features with high ¯tness
value. Based on this value, the features are selected
from the extracted OCT and retinal images.

Based on the ¯tness value, the a®ected DR is
identi¯ed from the OCT and retinal images. The
feature selection process eliminates the insigni¯-
cant features from the input space before the
classi¯cation to reduce the time complexity issues.
The dimensional reduction through the feature
selection process reduces the classi¯cation time and

also improves the classi¯cation accuracy. This is
possible due to the reduction in the overlap of
di®erent classes in the feature space. This feature
selection mainly reduces the image dimension to
reduce the computational cost. This results in the
minimization of the misclassi¯cation of the images.
The PSO-GSA and PSO-DEFS feature selection
techniques provide the optimal separating hyper-
plane. This enables to obtain a clear decision
boundary. Then, the selected features using PSO-
GSA and PSO-DEFS are classi¯ed for the detec-
tion of DR.

3.5. Classi¯cation

The selected features are classi¯ed by using M-RVM
classi¯cation approach.

(1) M-RVM
The M-RVM becomes a popular choice for clas-

si¯cation as it o®ers various merits over the SVM.
This M-RVM is performed based on the Bayesian
formulation of a linear model that is integrated with
previous results. The obtained result is in a sparse
representation with low computational cost. Let the
training image collection IT ¼ fðIi; cjÞ j Ii 2 DIi ;
cj 2 ð1; 2; . . . ;nÞ, where Image Ii contains m dis-
tinct feature terms, and Ii ¼ ff1i; f2i; . . . ; fpig.

The multi-class classi¯cation on the selected
image features is modeled as M-RVM by using
below mentioned mathematical model:

ci ¼ I T � 	ðIiÞ; ð20Þ
ci ¼ 	ðIi; IÞ þ 
kÞ: ð21Þ

Finally, the probabilistic classi¯cation equation
of RVM based on the Gaussian prior distribution of
the image features for Ii from both OCT and retinal
images is described as follows:

P
ci
Ii
; �2

� �
¼ ð2��2ÞK=2exp � 1

2�2
� ½ci � 	ðIiÞ�2

� �
:

ð22Þ
This formula is used to estimate the prediction of

the classes. The M-RVM prediction is more reliable
than the SVM classi¯er. The M-RVM outputs
probabilities of class membership than the point
estimation. It delivers a conditional distribution in
the class prediction to obtain the resultant abnor-
mal images. The multi-class classi¯cation enables
accurate classi¯cation of a set of images using moreFig. 5. Fitness estimation for PSO-DEFS.

An enhanced PSO-DEFS based feature selection
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than two classes. The multi-class classi¯cation
ensures better interpretability and high computa-
tional e±ciency. It is also possible to gain knowledge
about the class by inspecting its corresponding
classi¯er since each class is represented by one and
one classi¯er only. Figure 6 shows the multi-class
classi¯cation results.

Based on the supervised learning process, the
features and labels for the images are learnt and
training of the images is performed. Then, the de-
cision vector is determined based on the di®erent

class labels. Various stages of the diseases are clas-
si¯ed based on the class labels. Here, CSME repre-
sents Clinically Signi¯cant Macular Edema. The
a®ected DR is identi¯ed as any one of the following
diseases:

. NODR

. Mild NPDR (with CSME/without CSME)

. Moderate NPDR (with CSME/without CSME)

. Severe NPDR (with CSME/without CSME)

. Very severe NPDR (with CSME/without CSME)

. High-risk NPDR (with CSME/without CSME)

. PDR with vitreous hemorrhage (with macular
edema/without molecular edema)

. PDR with TRD

. Status post photo coagulation (stable/unstable)

. Focal coagulation (done/not done)

Figure 7(a) shows very severe NPDR with
CSME, Fig. 7(b) shows moderate NPDR without
CSME, Fig. 7(c) shows severe NPDR with CSME,
Fig. 7(d) shows NODR, Fig. 7(e) shows PDR with
Vitreous hemorrhage with macular edema, Fig. 7(f)
shows PDR with CSME, Fig. 7(g) shows mild
NPDR with CSME, and Fig. 7(h) shows PDR with
TRD.

Fig. 6. Multi-class classi¯cation results.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. (a) Very severe NPDR with CSME, (b) moderate NPDR without CSME, (c) severe NPDR with CSME, (d) NODR,
(e) PDR with vitreous hemorrhage with macular edema, (f) PDR with CSME, (g) mild NPDR with CSME, and (h) PDR with TRD.
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4. Performance Analysis

This section presents the experimental results
obtained from the investigation of the proposed
work for the identi¯cation of DR from both OCT
and retinal images. The evaluation metrics such as
accuracy, sensitivity, and speci¯city are evaluated
to estimate the performance of the proposed meth-
odology. During the testing phase, 60 di®erent
samples are taken and tested accordingly.

Our research work provides major focus on the
patients a®ected by DME. The total number of
images collected for this research work are 75 dis-
eased optical coherence tomography (OCT) images,
15 normal OCT images (out of 100 images) and
diseased CSME, PDR, NPDR, and severe PDR
images. These real-time datasets are collected from
Mahatma Gandhi Eye Hospital, Trichy. To en-
hance the e®ectiveness of the proposed work, the
image dataset of 100 labeled images, which includes
13 normal and 47 abnormal images from 60 patients
are considered.

The input OCT/retinal image is collected from
the dataset. The retinal image is captured by the
fundus camera in the RGB form. The pre-processing
is performed in both the OCT and the retinal image
to ¯lter the noise. After that, the pre-processed
retinal image is embedded with the OCT image for
authentication. This operation is clearly shown in
Fig. 8.

If the embedded image mismatches with the
original image of the patient in the database, then
the operation should stop or else further process is
performed to detect the DR for authenticated pa-
tient. For that, the retinal image is extracted from
the embedded image as shown in Fig. 9. If the
extracted image is normal, then no issue or else
the type of disease is identi¯ed by classifying the
features.

The performance metrics such as accuracy, sen-
sitivity, and speci¯city for the PSO-GSA and PSO-
DEFS during feature selection are compared with
the existing techniques such as probabilistic neural
network (PNN) and multi-SVM (M-SVM). In this
proposed work, the accuracy, sensitivity, and spec-
i¯city are estimated for 3000 features.

The PSO-GSA shows better performance on
high-dimensional functions. The convergence rate
of the PSO-GSA is higher than the standard PSO
and GSA. The PSO-GSA converges smoothly to
the optimum value without any abrupt oscillations.
This approach is highly successful in ¯nding the
best solution and obtaining a higher quality solu-
tion with better convergence property. The M-
RVM classi¯er requires a smaller amount of rele-
vance vector than the SVM. The testing time,
design complexity and cost of the M-RVM classi¯er
are also lower than the SVM classi¯er. The M-
RVM classi¯er improves the classi¯cation accuracy
of the medical images and reduces the training
time. The decision function of the RVM classi¯er is
much sparser than the SVM while maintaining its
detection accuracy. This leads to the signi¯cant
reduction in the computational complexity of the
decision function, thereby making it more suitable
for real-time applications. SVM requires tuning
during the training phase, but RVM does not

(a) (b) (c)

(d) (e)

Fig. 8. (a) Original OCT image, (b) original retinal image, (c)
pre-processed OCT image, (d) pre-processed retinal image, and
(e) embedded image for authentication.

(a) (b)

Fig. 9. (a) Extracted normal retinal image, and (b) extracted
abnormal retinal image.
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require tuning of a regularization parameter. The
computational complexity of the RVM classi¯er is
lower than the SVM classi¯er. The PNN classi¯er
requires high memory requirements and represen-
tative training set. Moreover, PNN approach exe-
cutes slowly in the real-time applications.

4.1. Confusion matrix —M-RVM
classi¯cation

This matrix is determined among the target class
and output class. This confusion matrix exhibits the
results of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). In this
proposed work, the TP is 25, TN is 39, FP is 0, and
FN is 1. The TP denotes the exact detection of the
number of images, FP represents the incorrect de-
tection of the number of images, TN is the exact
rejection of the number of images, and FN denotes
the incorrect rejection of the number of images. The
green color represents TP and TN values. The red
color denotes the FP and FN values. The confusion
matrix exhibits the results of the TP rate, FP rate,
accuracy, sensitivity, and speci¯city. The confusion
matrix for M-RVM classi¯cation is clearly shown in
Fig. 10.

4.2. Accuracy

Accuracy de¯nes the proximity of measurement
results to the true value. Accuracy is estimated by
using the following equation:

Accuracy¼ Number of TPþNumber of TN

Total population
; ð23Þ

where the total population is the summation of the
number of TP, number of FP, the number of FN,
and number of TN.

Figure 11(a) depicts the accuracy of existing
PNN and M-SVM and proposed M-RVM for feature

Fig. 10. Confusion matrix—M-RVM classi¯cation.

(a)

(b)

Fig. 11. (a) and (b) Accuracy analysis of M-RVM, PNN and
Multi-SVM approaches.
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selection using PSO-GSA. The accuracy of the pro-
posed M-RVM is higher than the existing techniques.
Similarly for feature selection using PSO-DEFS, the
obtained accuracy result is shown in Fig. 9(b).

Figure 11(b) depicts that the accuracy for PSO-
DEFS algorithm outperforms than the PSO-GSA
algorithm. The accuracy of the classi¯cation result
for both PSO-GSA and PSO-DEFS are 97.23% and
99.12%, respectively. Therefore, the proposed PSO-
DEFS has high accuracy, when compared with
PSO-GSA.

The accuracy of the LSB embedding process is
compared with the MSB embedding process.
Figure 12 shows the comparison between the accu-
racy of the LSB and MSB embedding processes.
The LSB embedding process achieves better perfor-
mance than the MSB embedding process. Figure 13
shows the steganographic image obtained usingMSB
embedding process.

4.3. Speci¯city

Speci¯city rate is described as the probability that a
test result will be negative once the DR is not
present and is evaluated as follows:

Specificity ¼ Number of TN

Number of FPþNumber of TN
:

ð24Þ
Figure 14(a) shows the speci¯city of the existing

PNN and M-SVM techniques and proposed
M-RVM classi¯er for PSO-DEFS.

Figure 14(b) depicts the speci¯city of the existing
PNN andM-SVM techniques and proposed M-RVM
classi¯er for PSO-GSA. Here, the PSO-DEFS

70

75

80

85

90

95

100

MSB Embedding
process

LSB Embedding process

A
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y 
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)

Fig. 12. Accuracy analysis of LSB and MSB embedding
process.

Fig. 13. Steganographic image obtained using MSB embed-
ding process.

(a)

(b)

Fig. 14. (a) and (b) Comparative Analysis of speci¯city for
M-RVM, PNN and Multi-SVM approaches.
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outperforms the PSO-GSA. Because, the speci¯city
of the classi¯cation result for both PSO-GSA and
PSO-DEFS are 90.28% and 98.7%, respectively.
Therefore, the proposed PSO-DEFS has high sensi-
tivity, when compared with PSO-GSA.

4.4. Sensitivity

Sensitivity rate is de¯ned as the probability that a
test result is positive when the DR is present. It is
evaluated as follows,

Sensitivity ¼ Number of TP

Number of TPþNumber of FN
:

ð25Þ

According to this equation, the sensitivity of the
proposed methodology is estimated. Figure 15(a)
illustrates the sensitivity of the existing PNN and
M-SVM techniques and proposed M-RVM classi¯er
for PSO-GSA.

Figure 15(b) depicts the sensitivity of existing
PNN and M-SVM and proposed M-RVM classi¯-
cation for PSO-DEFS algorithm. This PSO-DEFS
outperforms than the PSO-GSA algorithm.

Here, the PSO-DEFS outperforms than the PSO-
GSA. Because the sensitivity of the classi¯cation
results for both PSO-GSA and PSO-DEFS are 92.62%
and 98.2%, respectively. Therefore, the proposed PSO-
DEFS has high sensitivity when compared with PSO-
GSA. Finally, based on the class labels, the diseases are
classi¯ed by using M-RVM. From this classi¯cation,
we conclude that the patient is a®ected by Moderate
NPDR without CSME disease in DR.

5. Conclusion and Future Work

This section presents the conclusion and future scope
of the proposed work. In this paper, an enhanced
PSO-DEFS based feature selection for DR identi¯-
cation with biometric authentication is proposed. At
¯rst, the input images are pre-processed by HMF.
The pre-processed images are embedded with each
other using LSB for authentication purpose to pro-
vide security. If the image is authenticated, then the
further process is performed, or else the operation is
stopped. Simultaneously, the image features are
extracted using CLTrP and Tamura features for the
authenticated image. The feature selection is per-
formed by PSO-DEFS and PSO-GSA to reduce time
complexity. Based on the ¯tness value, the feature
selection is performed. The M-RVM classi¯cation
approach is applied to classify the 13 normal and 62
abnormal images among 75 images from 60 patients.
Then, the patients with DR are further classi¯ed by
M-RVM. The obtained accuracy, sensitivity, and
speci¯city are 99.12%, 98.2%, and 98.7%, respec-
tively. Finally, we conclude that the experimental
results show that the proposed work achieves better
accuracy, sensitivity, and speci¯city than the existing
M-SVM and PNN techniques. In future, the research
work can be extended to detect glaucoma.
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